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The asymptotic structure of a turbulent boundary layer on a plate with a boundary-layer distributed suction,
consisting of a suction zone, a viscous zone, a buffer zone, a velocity-defect zone, a Corrsin superlayer, and
a irrotational-flow zone, has been determined. The analysis was carried out within the framework of the
Reynolds equations with the use of the combined method of different scales and joined of asymptotic expan-
sions. The Corrsin superlayer was interpreted as a discontinuity of turbulent stresses.

Introduction. In accordance with the synergetic laws, the structure of a dynamic system becomes compli-
cated with increase in the number of determining parameters [1]. In the incompressible-fluid dynamics, the compli-
cation of the structure of a flow is related to its natural stratification — the formation of asymptotic layers. For
example, the flow in a laminar boundary layer is unilaminate [2], the flow in an intensive laminar column-shaped
vortex is two-layer [2], the flow in the neighborhood of the separation point of a laminar boundary layer (free in-
teraction) is three-layer [3], the flow in a turbulent boundary layer is also three-layer [4, 5], and the flow in the
zone of development of the disturbances of a supersonic flow is five-layer [6]. Thus, the triad principle [7, 8] in
the fluid dynamics is not universal.

The semi-empirical and asymptotic definitions of a layer should be distinguished. In the semiempirical or em-
pirical theory, a quantitative interval (layer), in which experimentally-discovered laws of wall, velocity defect, and
wake act [9], is introduced. In the asymptotic theory [2–6], an internal variable related to the scale of the layer and
changing usually from 0 to ∞ is introduced, the solutions in the neighboring layers join with each other and, within
each layer, simplified equations following, with an O-evaluating accuracy, from the fluid-dynamics complete equations
for the balance of the inertial, viscous, and turbulent forces are true. In the simplified equations, only certain combi-
nations of these forces are retained and there exist the following capabilities: all the three types of forces are retained,
they are involved in pairs (inertial and viscous forces, inertial and turbulent forces, viscous and turbulent forces) or in-
dividually (Euler equations, Stokes equations, the equality of turbulence forces to zero [10]).

V. I. Ponomarev has developed, with the use of the method of joining asymptotic expansions, a three-layer
model of a turbulent boundary layer on a plate, consisting of a near-wall zone, a buffer zone, and a velocity-defect
zone [4]. Thus, the asymptotic theory of turbulent boundary layer has been devised. Empirical theories were proposed
in earlier works too [11, 12]. Even though the author used, for obtaining concrete results, the above-mentioned empiri-
cal laws of wall and velocity defect, the analysis carried out by him was fairly strict.

The boundary between the laminar and turbulent zones was experimentally investigated for the first time in
[13]; it is called the Corrsin superlayer [9, 14]. It can be a boundary of both the extended turbulent zone (a jet, a
boundary layer, a wake, a column-shaped vortex) and a turbulent spot in an intermittent flow. If the turbulization of a
flow proceeds so rapidly that this boundary can be considered as a discontinuity, to the contrary, the relaminarization
of the flow proceeds along the coordinate, and the corresponding boundary can hardly be considered as a discontinu-
ity. The Corrsin superlayer dividing the turbulent and laminar zones should be not only in the wake of the jet or in
the boundary layer, but also in the jet and in the mixing layer.

The objective of the present work is to theoretically investigate the properties of the experimentally-discovered
Corrsin superlayer. Two standpoints on this layer exist. If the indicated superlayer is considered as a discontinuity in the
corresponding scale, in it the conditions following from the first principles of continuum mechanics should be fulfilled.
If this layer is considered as a superlayer having a thickness, the adapted Reynolds equations should be vapid in it.
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Formulation of the Problem. A plane stationary flow of an incompressible Newtonian fluid propagating over
a penetrable plane (Fig. 1) will be considered. As the base unit parameters, we will use the length of the plate, the
velocity of an undisturbed flow, and the density of the fluid. In the Cartesian coordinate system x, y, in which the axis
x is directed along the plate, the Reynolds equations have the form

∂ux

∂t
 + ux 

∂ux

∂x
 + uy 

∂ux

∂y
 = ν 

∂2
ux

∂y
2  − 

∂τxy

∂y
 , (1)

∂ux

∂x
 + 

∂uy

∂y
 = 0 . (2)

Expression (1) does not involve members that are small in the extended-turbulent-zone approximation being consid-
ered. Within the limits of this approach, the rate of suction is assumed to be small: uy(x, 0) = βv0(x), β << 1. Let us
assume that the suction is realized through the slots in the plane, arranged in a regular order with a period α =
B(x)νn ⁄ 2, where B = O(1), n > 0. The penetrability of the slots is assumed to be arbitrary, equal to unity in order of
magnitude.

As applied to the suction of fluid through the porous walls, in the fluid-flow model being considered, the sto-
chastic disposition of pores and their shape are disregarded, which, however, is warranted because the Darcy model,
used usually for calculating the filtration of flows, is impractical in the case of eddying-flow suction, i.e., in the case
of boundary-layer suction.

In each asymptotic subregion, the internal coordinate yk = y ⁄ δk, where δk is a characteristic thickness of the kth
subregion (k = 1–6), is introduced. A turbulent stress will be defined as τxy = εkσxy, where εk << 1 and σxy = O(1).

It is seen from the formulation of the problem that a priori there is an unknown function τxy and three pa-
rameters prescribed a priori: ν, α (or n instead of α), and β. In the asymptotic boundary-layer theory without suction,
the logarithmic laws of wall and of velocity defect that conclusively agree with experimental results are additionally
used. For the problem on the boundary-layer suction such laws were not established. Therefore, the analysis will be
less concrete. As for the determining parameters, the solution becomes boundless in the case where their number is
fairly large (≥3). In this case, the circumstance that the parameter α is of importance only in the suction zone, where
β does not appear in the explicit form, alleviates the problem.

Near-Wall Viscous Region. The zonal structure of the turbulent boundary layer is determined by the opposite
action of the friction and suction processes. First we consider the viscous near-wall zone 2 (k = 2). In accordance with
the theory [4], at β B 0 the vertical velocity in this region uy = O(ν). Therefore, the suction begins to substantially
influence the boundary layer at β = ν. If β << ν, the suction is only a linear addition to the flow without suction; oth-

Fig. 1. Asymptotic structure of a flow: 1) suction zone; 2) viscous zone; 3)
buffer zone; 4) velocity-defect zone; 6) irrotational-flow zone; the dashed line
is the surface of a body with transverse slots; the dotted line is the Corrsin su-
perlayer (zone 5).

343



erwise, the vertical velocity can be represented as uy C βv2(x, y2). From the continuity equation (2), we find the ordinal
number of the longitudinal velocity component ux C (β ⁄ δ2)u2(x, y2). In this zone, the inertial terms are small and the
viscous and turbulent stresses involved on the right side of Eq. (1) are balanced. From this condition the thickness of
the viscous layer δ2 = (νβ ⁄ ε2)1 ⁄ 2 is determined. Upon integration of Eq. (1) with respect to y2, we obtain the known
law on the constancy of the friction stress across the layer

∂u2

∂y2
 − σxy (x, y2) = A2 (x) . (3)

The velocity of the flow increases with increase in β. It may be suggested that, at any critical value of β =
β∗, along with terms responsible for the appearance of the viscosity and turbulence, the inertial terms entering in the
left side of (1) play a dominant role in zone 2.

Suction Zone. In the suction zone 1, the flow is quasi-periodic along the longitudinal coordinate x. Since the
period is small, for description of this flow we will use the difference-scale method [15] and, in doing so, introduce
a rapid variable x1 in accordance with the formula dx1

 ⁄ dx = 1 ⁄ α.
The Navier–Stokes operator becomes nondegenerate when the transverse coordinate y is increased by α times:

y = αy1. The slow variable x is retained; the solution remains dependent on this coordinate. Thus, instead of the two
independent variables x and y, we will have three variables (x, x1, and y). The dependence of x1 on α is periodic, and
the dependence of x1 on x is nonperiodic. The fluid motion in the suction zone represents a flow around both sides
of the infinite system of slots.

Let us estimate the orders of the quantities being considered. From (3) we have

∂u2

∂y2
 (x, 0) = A2 − σxy (x, 0) .

Consequently, at y2 → 0

ux C 
β

δ2

 A2 − σxy (x, 0) y2 = 
αβ

δ2
2  A2 − σxy (x, 0) y1 .

The vorticity at the bottom of the viscous zone is constant. From the condition of join of the solution in zone
1 with the solution in zone 2 it follows that the vorticity in the suction zone at y → ∞ is also constant and the veloc-
ity expansion has the form

ux C 
αβ
δ2

2  u1 (x, y1) . (4)

Moreover, at σxy(x, 0) ≠ 0

ε1 = ε2 = 
βν

δ2
2  . (5)

The velocity is limited if the inequality β << δ2
2 ⁄ α or the inequality β = δ2

2 ⁄ α are fulfilled.
The Reynolds number in the suction zone is equal to

Re1 = 
α2β

νδ2
2  . (6)

There are three possibilities.
1. If α2β = νδ2

2, R1 = O(1) and the complete Reynolds equations are true since ε1 = (ν ⁄ α)2.
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2. In the case where α2β >> νδ2
2, the viscosity forces are negligibly small. Using (4) and (5), we will com-

pare, by order of magnitude, the inertial and turbulent terms in Eq. (1):
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Consequently, in the case being considered,

ux 
∂ux

∂x
 >> 

∂τxy

∂y
 .

The flow in the suction zone is laminar. This conclusion is naturally plausible at σxy (x, y2 = 0) = 0. In this case, the
Euler equations are true.

3. Finally, in the case where α2β << νδ2
2, the inertial terms should be neglected. In Eq. (1), the viscous and

turbulent terms are of the same order and are equal to βδ2δ2
−2. By analogy with (3) we have

∂u1

∂y1
 − σxy (x, y) = A1 (x) .

As was already mentioned, a laminar boundary with a suction is two-layer and consists of the suction zone
of thickness O(α) and the main part of thickness O(ν1 ⁄ 2). Substitution of β = ν and δ2 = ν1 ⁄ 2 into formula (6) makes
it possible to formally rearrange it for the laminar case:

Re1 = α2δ−3 ⁄ 2 . (7)

The critical value of α = α∗ = ν2 ⁄ 4 separates the regime of creeping motion [16] from the regime of ideal-
liquid flow [17].

Zones 3 and 4. We revert to the problem on the turbulent-boundary-layer suction. In the buffer zone 3 of
thickness δ3, the velocity ux is of the order of O(1) and the viscous forces are negligibly small. Since uy C βv3(x, y3),
from (2) we find that δ3 = β and ux C u3(x, y3). From (1) it follows that ε3 = β and

u3 
∂u3

∂x
 + v3 

∂u3

∂y3
 = − 

∂σxy (x, y3)
∂y3

 .

These estimates formally correlate with the data obtained in [4] for the boundary layer without suction. Analogous ex-
pansions are also valid in zone 4 of thickness δ4:

uy C βv4 (x, y4) ,   ux C 1 + 
β
δ4

 u4 (x, y4) .

From (1) we obtain that β = ε4. Consequently, the turbulent stresses in zones 3 and 4 are equal in order of
magnitude: ε4 = ε3. From this equation it follows that

∂u4

∂x
 = − 

∂σxy (x, y4)
∂y4

 .

Conditions at the Corrsin Discontinuity. The next asymptotic layer is the Corrsin superlayer 5. A disconti-
nuity cannot exist in the nature. All along, there is a small scale γ at which the discontinuity is structured, i.e., is
smoothed (Fig. 2), because a time or space discontinuity can result only from the resimplification of the physical
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model or the idealization of the problem. Such a "jump–layer" dualism has the following form: a layer is realized in
the scale L = O(γ) and a jump in the scale L >> γ.

We will assume that the velocity components are nondisturbed and are defined by u∞ and the pressure p is
determined as ρu∞

2 . The main small parameters used in the formulation of the problem are the friction speed u∗ and
the reciprocal Reynolds number δ2 = ν ⁄ (lu∞).

Let us assume that the Corrsin superlayer is a discontinuity of turbulent stresses, and the pulsations at its
outer boundary are zero. Since this layer is a superlayer (Fig. 3), it has certain features. Actually, the thicknesses δn
of the usual layers enclosed into each other are related by the asymptotic recursion inequalities δn+1 >> δn (δn is a
sublayer for δn+1). This situation is realized in the above-described cases of a free interaction, a boundary layer, and
a turbulent wake. In the case being considered, in contrast, the thickness of the superlayer is smaller than the thickness
of the previous layer: γ = δN+1 << δN (N + 1 is the number of the superlayer and δN+1 is a superlayer relative to δN,
N = 4).

In the scale O(δ4), the superlayer is a discontinuity having a clearly defined boundary: y = δ4y0(x) + O(δ4).
At this boundary, the joining conditions following from the conservation laws are fulfilled.

Let us consider a locally plane element of a stationary jump x, y (the conditions along the z axis are identical
to the conditions along the x axis) presented in Fig. 4. The quantities for the region above the discontinuity will be
denoted by the upper index "–" and the quantities for the region under the discontinuity will be denoted by the upper
index "+." From the condition of mass conservation we obtain

uy
+
 = uy

−
 = uy .

Fig. 2. Discontinuity (dashed line) and structure of the superlayer (solid line).

Fig. 3. Structure of the shell of the boundary layer (the superlayer is shaded,
N = 4; the center line is the conditional boundary of the layer positioned
below upstream of the superlayer).

Fig. 4. Plane element of a discontinuity.
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Contrary to the usual practice [18], it will be assumed that, under the conditions of longitudinal-momentum conserva-
tion, a liquid flows through the layer and, consequently, a momentum is transferred through it:

τyy + p
+
 − 2δ2

 
∂uy

+

∂y
 = p

−
 − 2δ2

 
∂uy

−

∂y
 , (8)
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∂ux
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∂ux

−
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 , (9) 

where τkj
−  B 0; τkj

+  = τkj.
Structure of a Superlayer. In the scale O(γ), a clearly defined front is absent and a transition layer, at both

boundaries of which the join conditions are fulfilled, exists. The parabolic Reynolds equations, representing an approxi-
mation sufficient for the attainment of the further purposes, have the form
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∂ux
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 + 

∂uy

∂y
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The superlayer is positioned in the velocity-defect zone, dividing the plus- and minus-regions. In the plus-region, ac-
cording to the estimations of (4), we have

ux = 1 + O (u∗) ,   uy = O (u∗
2) ,   δ4 = u∗ << 1 ,   p = O (u∗

2) ,   τxy = O (τyy) = O (u∗
2) .

The term responsible for the fluid flow under condition (9) is small as compared to the turbulent stress τxy.
Actually:

uyux
+
 − uyux

−
 = uy (ux

+
 − ux

−) = O (u∗
3) ,

whereas τxy = O(u∗
2). Consequently, instead of (9), we obtain

τxy = δ2
 
∂ (ux

+
 − ux

−)
∂x

 .

The jump (to zero) of the turbulent stresses is due to the action of viscous forces. From these considerations we can
easily determine the thickness of the superlayer. Since

δ2
 
∂ux

∂y
 = O 




δ2

 
u∗

δ4




 = O (τxy) = O (u∗

2) ,   then   δ5 = γ = 
δ2

u∗
 = δ2 << δ .

As expected, the thickness of the superlayer is equal to the thickness of the viscous near-wall layer since, in
both cases, one and the same viscous and turbulent stresses act. The asymptotic expansions in the superlayer have the
form

uy = u∗δv (x, y5) + ... ,   ux = 1 + u∗u5 (x, y5) + ... ,   − ∞ ≤ y5 ≤ + ∞ ,
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p = u∗
2
p5 (x, y5) ... ,   τkj = u∗

2σkj (x, y5) + ... ,   y = δ4y0 (x) + γy5 .

From (10) we obtain

∂u5

∂y5
 = σxy ,   p = − σyy ,   

∂u5

∂x
 + 

∂v5

∂y
 = 0 .

At y5 → +∞ we properly have σxy → 0, σyy → 0, and, therefore, p → 0. Consequently, the line of the turbu-
lent-stress discontinuity is an isobar separating the plus-region from the minus-region. The flow in the minus-region is
laminar and irrotational, δ6 = δ4.

Thus, two zones — the Corrsin superlayer and the irrotational velocity-defect zone — appear in addition to
the four turbulent-boundary-layer zones detected earlier.

It should be noted that the theory devised in [4] is based on the supposition that the flow is plane and sta-
tionary. In actual practice, a turbulent boundary layer is three-dimensional and nonstationary.

Since the averaged-velocity component along the z axis uz(x, y) is equal to zero: (uz′′
__

) = 0, it follows from the
Reynolds equations that the z component of the forces caused by the action of the turbulent tresses is also equal to zero

∂ux′′ uz′′
____

∂x
 + 

∂uy′′ uz′′
____

∂y
 + 

∂uz′′ uz′′
____

∂z
 = 0 . (11)

In the theory of (4) it is assumed that the turbulent-stress components are equal in order of magnitude. On
the assumption that ux′′ uz′′

____
 D uy′′ uz′′

____
 D uz′′ uz′′

____
, from (11) we obtain that uy′′ uz′′

____
 = f(x) in the boundary layer where x, z D l and

y << l. This equality is true not only in the boundary layer, but also outside it. Since the turbulence in the incident
flow is uniform, f = const.

The second comment concerns the time dependence of the solution. To estimate this dependence, it is neces-
sary to change the rule of averaging — to perform the averaging over phase [18] instead of the time averaging pro-
posed by Reynolds [9]. Then the term ∂u∗ ⁄ ∂t responsible for the nonstationarity will appear in the Reynolds equation
that, in this case, will become suitable for description of wave process. In the viscous near-wall zone, the order of this
term is u∗ ⁄ T, and the order of the friction force is u∗

3 ⁄ δ2. On equating these two estimates, we obtain the characteristic
period of a wave: T D (δ ⁄ u∗)2 << 1. Thus, high-frequency waves propagate in the near-wall zone. In the buffer zone,
ux D 1; therefore, T D 1. In the velocity-defect zone, the velocity component ux is linearized and, once again, T D 1.

Conclusions. The asymptotic structure of a turbulent boundary layer of an incompressible fluid with a suction,
formed on a plate, has been investigated. In this case, the combined method of different scales and joined asymptotic
expansions was used. Unlike the laminar boundary layer joined asymptotically with the external flow, the turbulent
boundary layer has a clearly defined boundary representing the Corrsin superlayer. Unlike the Ponomarev theory, we
took into account the existence of this boundary and the influence of the suction on the structure of the flow and de-
termined the conditions, under which the viscous and nonviscous regimes of flow are realized in the suction zone.
Moreover, the estimates of the quantities characteristic of the other asymptotic regions were compared to those ob-
tained in [4].

The Corrsin discontinuity is unusual. Discontinuities of two types are known [19]: the discontinuity of the
normal velocity component caused by the compressibility of the fluid and the discontinuity of the tangential velocity
component, through which a flow is absent. The boundary between the laminar and turbulent regions in the incom-
pressible fluid cannot be assigned to any of these types because the normal velocity component does not undergo a
discontinuity at it and there is a flow through this boundary.

The structure of a hydrodynamic discontinuity of a continuous medium, where γ >> λ, was considered; an ex-
ample is a tangential discontinuity: γ = δ >> λ. The structure of a nonhydrodynamic discontinuity can be introduced
within the framework of the hydrodynamic approximation. In this case, it is necessary to appeal to the kinetic theory;
an example is a strong shock wave in a gas: γ D λ. In accordance with the results obtained, the Corrsin superlayer rep-
resents a hydrodynamic discontinuity. Within this layer, as in the near-wall zone, the molecular-viscosity action is sig-
nificant. The thickness of the superlayer was found to be equal in order of magnitude to the thickness of the viscous
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neat-wall layer. Since this value is fairly small from the practical standpoint, the experimental data on the structure of
the Corrsin superlayer are small in numbers.

The use of asymptotic methods for solving the problem on turbulent fluid flows is complicated since the form
of the Reynolds stresses is unknown. Therefore, the conclusions made in this case are not as rigorous as the conclu-
sions made for the boundary layer without suction.

In the problems on a jet and a mixing layer, such parameters as the wall and dynamic velocity are absent;
therefore, at fairly large distances from the "flow origin" the asymptotic structure of the layers will be three-zone, in-
cluding a main zone, a superlayer with a structure identical to the structure considered, and a laminar-flow zone.

The asymptotic analysis, along with the phenomenological analysis [20], gives a fairly strict qualitative repre-
sentation of the phenomenon being considered, without which it is impossible to obtain quantitative results with the
use of the zonal numerical methods [21] and the experimental diagnostics, and, therefore, opens up new possibilities.
For numerical simulation, such analysis gives a recipe for choosing an economical grid and elimination of unnecessary
terms in the Navier–Stokes equation for certain zones. In an experiment, the situation is more complex. Since the
thickness of each sublayer is smaller (by approximately ten times) than the thickness of the previous sublayer by an
order of magnitude, measuring devices should be positioned in the near-wall zone with an accuracy higher by several
orders of magnitude than the accuray of disposition of devices in the other zones. Because of this, at present there are
no reliable data on the structure of these sublayers.

NOTATION

A1(x), A2(x), arbitrary functions; p, pressure; Re, Reynolds number; T, period of oscillations; u, v, velocity
components; u∞, wake velocity; u∗, friction speed; x, y, Cartesian coordinates; α, period of slots; β, suction coefficient;
β∗, critical value of the suction coefficient; γ, length scale; δ, thickness of a layer; λ, mean free path; ν, coefficient of
kinematic viscosity; ρ, density of a fluid; τxy, Reynolds stresses.

REFERENCES

1. G. Nikolis and I. Prigogine, Exploring Complexity [Russian translation], Mir, Moscow (1990).
2. S. K. Betyaev, Mathematical models of a column-like vortex, Teor. Osnovy Khim. Tekhnol., No. 5, 1–5 (2000).
3. V. V. Sychev, A. I. Ruban, Vik. V. Sychev, and G. L. Korolev, The Asymptotic Theory of Separation Flows

[in Russian], Nauka, Moscow (1987).
4. V. I. Ponomarev, An asymptotic analysis of the turbulent boundary layer of an incompressible fluid, Uch. Zap.

TsAGI, 6, No. 3, 42–50 (1975).
5. V. V. Sychev and Vik. V. Sychev, On the structure of a turbulent boundary layer, Prikl. Mat. Mekh., 51, Issue

4, 594–599 (1987).
6. V. A. Kuz’minskii, On complete stabilization of a boundary-layer flow at supersonic velocities, Uch. Zap.

TsAGI, 6, No. 5, 45–54 (1975).
7. G. W. F. Hegel, Science of Logic [Russian translation], Mysl’, Moscow (1999).
8. R. G. Barantsev, Synergetics in Contemporary Natural Science [in Russian], E′ditorial URSS, Moscow (2003).
9. A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics [in Russian], Vol. 1, Gidrometeoizdat, St. Peters-

burg (1992).
10. E. R. Hoffmann and P. N. Joubert, Turbulent line vortices, J. Fluid Mech., 16, 395–411 (1963).
11. K. S. Yajnik, Asymptotic theory of turbulent channel and boundary-layer flow, J. Fluid Mech., 42, Pt. 2, 411–

427 (1970).
12. W. Frost and T. Moulden, Turbulence, Principles and Applications [Russian translation], Mir, Moscow (1980).
13. S. Corrsin and A. L. Kistler, Free-stream boundaries of turbulent flows, NACA Report, No. 1244 (1955).
14. O. M. Phillips, The entrainment interface, J. Fluid Mech., 51, Pt. 1, 97–118 (1972).
15. O. A. Oleinik and V. N. Samokhin, Mathematical Methods in Boundary-Layer Theory [in Russian], Nauka,

Moscow (1997).

349



16. S. K. Betyaev, Structure of a laminar boundary layer with distributed suction, Prikl. Mekh. Tekh. Fiz., No. 5,
97–104 (1984).

17. S. K. Betyaev, Formation of a jet in a nonstationary ideal fluid flowing from a slot, Prikl. Mat. Mekh., 45,
Issue 6, 1032–1040 (1981).

18. A. K. M. Hussain and W. C. Reynolds, The mechanics of an organized wave in turbulent shear flow, J. Fluid
Mech., 41, Pt. 2, 241–258 (1970).

19. L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1986).
20. I. I. Vigdorovich, Turbulent boundary layer on a plate with an intensive suction, Izv. Akad. Nauk SSSR, Mekh.

Zhidk. Gaza, No. 3, 61–76 (1999).
21. D. K. Bisset, J. C. R. Hunt, and M. M. Rogers, The turbulent/non-turbulent interface bounding a far wave, J.

Fluid Mech., 451, 383–410 (2002).

350


